Divisorial rings and Cox rings

Fritz Hörmann

June 27, 2011

In this manuscript \mathbb{N} will always denote natural numbers including 0.

Contents

1	Preliminaries on monoids	1
2	Graded rings and sheaves	3
3	Divisorial rings and sheaves	6
4	Cox rings and sheaves	7
5	Finite generation of divisorial rings associated with semi-ample bundles	8
6	Fixed parts	10

1 Preliminaries on monoids

Definition 1.1. An Abelian monoid is a set with a binary, associative, and commutative operation which has a neutral element. It will often be called just a monoid in this manuscript because we will not deal with non-commutative monoids. A monoid M is called

- finitely generated if there is a finite set of generators, or equivalently if there is a surjection of monoids N^r → M for some r.
- integral, if a + z = b + z implies a = b,
- fine, if it is finitely generated and integral.
- saturated, if for all $x \in M > (see definition below)$ with $nx \in M$ for some $n \in \mathbb{N}_{>0}$ is follows that $x \in M$.

Abelian monoids form a category, denoted by [Ab mon].

1.2. We have the adjunctions

$$[\mathbb{Q}\text{-}\mathbf{vs}] \xrightarrow[A \mapsto A \otimes_{\mathbb{Z}} \mathbb{Q}] [A\mathbf{b}] \xrightarrow[M \mapsto < M >] [A\mathbf{b} \text{ mon }].$$

Here

$$< M >= \bigoplus_{m \in M} \mathbb{Z}[m]$$

modulo the relations [0] = 0 and [m + n] = [m] + [n] for all $m, n \in M$. We have the following facts:

Proposition 1.3. 1. $M \leftrightarrow M > iff M$ is integral. In this case $\langle M \rangle$ may be defined as the group of differences, i.e. the set (m, n) of pairs in M modulo the (now transitive) relation

$$(m_1, n_1) \sim (m_2, n_2)$$
 if $m_1 + n_2 = m_2 + n_1$

with its obvious group structure. If M is finite and integral it is already a group.

- 2. $A \hookrightarrow A \otimes_{\mathbb{Z}} \mathbb{Q}$ iff A is torsion free.
- 3. M f.g. $\Rightarrow \langle M \rangle$ f.g. and A f.g. $\Rightarrow A \otimes_{\mathbb{Z}} \mathbb{Q}$ f.g. but not vice versa.
- 4. There is a bijection

$$\begin{cases} f.g. \ saturated \ submonoids \ M \ of \ \mathbb{Z}^n \\ (s.t. < M >= \ \mathbb{Z}^n) \end{cases} \longrightarrow \begin{cases} rational \ polyhedral \ cones \ in \ \mathbb{R}^n \\ (not \ containing \ a \ line) \end{cases} \\M \quad \mapsto \quad M^{\vee} \\ \sigma^{\vee} \cap \ \mathbb{Z}^n \quad \nleftrightarrow \quad \sigma$$

- 5. Products of fine monoids are fine.
- 6. Equalizers (in particular kernels) of maps from fine monoids to integral ones are fine.
- 7. Fibre products (in particular intersections) of fine monoids over integral ones are fine.

Proof. 1.–3. are obvious. The only point in 4. is that $\sigma^{\vee} \cap \mathbb{Z}^n$ is finitely generated. This is called Gordon's Lemma and seen as follows: Let $v_1, \ldots, v_n \in \mathbb{Z}^n$ be generators of σ^{\vee} and let $x \in \sigma^{\vee} \cap \mathbb{Z}^n$ be given. We may write:

$$x = n_1 v_1 + \dots + n_n v_n + x_0,$$

with $n_i \in \mathbb{N}$ and where

$$x_0 = q_1 v_1 + \dots + q_n v_n$$

with $q_i \in \mathbb{Q} \cap [0,1]$. This shows that $\sigma^{\vee} \cap \mathbb{Z}^n$ is generated by the *finite* set

$$\mathbb{Z}^n \cap \sum_i [0,1] v_i.$$

5. is obvious. 6. The equalizer of two maps $\alpha, \beta \in \text{Hom}(M, N)$ is also the equalizer of the composition $\overline{\alpha}, \overline{\beta} \in \text{Hom}(M, \langle N \rangle)$ because N is integral, hence it is the kernel of $\overline{\alpha} - \overline{\beta}$. Therefore it suffices to see the finite generation of the kernel of a morphism $\rho: M \to A$ to an Abelian group. Consider a diagram with exact rows:

A diagram chase shows that the left vertical arrow is surjective. This reduces to show the finite generation of the kernel of a morphism $\gamma : \mathbb{N}^r \to A$. Now look at the following diagram with exact rows:

A diagram chase shows that

$$\ker(\gamma) = \ker(\overline{\gamma}) \cap \mathbb{N}^r = ((\mathbb{R}_{\geq 0})^r \cap \ker(\overline{\gamma})_{\mathbb{R}}) \cap \ker(\overline{\gamma}),$$

which is finitely generated by 4. (Gordon's Lemma). Finally 7. follows from 5. and 6.

2

2 Graded rings and sheaves

Definition 2.1. Let R be a commutative ring and M an Abelian monoid. A commutative R-algebra B together with a decomposition

$$B = \bigoplus_{m \in M} B_m$$

such that $B_m \cdot B_n \subseteq B_{m+n}$ is called *M*-graded. The same definition for a ringed space (X, \mathcal{O}_X) and a sheaf *B* of \mathcal{O}_X -algebras.

This defines categories, where morphisms are supposed to be homogenous.

2.2. We have the adjunction:

$$[\text{ comm } R\text{-alg }] \xrightarrow[M \mapsto R[M]]{\text{mult. monoid}} [\text{ Ab mon }]$$

Here R[M] is the ring defined by $\bigoplus_{m \in M} R[m]$ and the multiplication $[m_1][m_2] = [m_1 + m_2]$.

2.3. If M is a group and R, S comm. rings, we have

$$\operatorname{Hom}_{\operatorname{spec}(R)}(\operatorname{spec}(S), \operatorname{spec}(R[M])) = \operatorname{Hom}_{R}(R[M], S) = \operatorname{Hom}_{group}(M, S^{*})$$

Since the latter are Abelian groups in a functorial way, $\operatorname{spec}(R[M])$ is a group scheme over $\operatorname{spec}(R)$.

Example 2.4. $A = \mathbb{Z}/n\mathbb{Z}$:

$$\operatorname{Hom}_{\operatorname{spec}(R)}(\operatorname{spec}(S), \operatorname{spec}(R[A])) = \{x \in S^* \mid x^n = 1\},\$$

i.e. spec $(R[A]) = \mu_{n,R}$. $M = \mathbb{Z}$:

 $\operatorname{Hom}_{\operatorname{spec} R}(\operatorname{spec}(S), \operatorname{spec}(R[A])) = S^*,$

i.e. spec $(R[A]) = \mathbb{G}_{m,R}$.

In general, by the structure theorem of Abelian groups, $\operatorname{spec}(\mathbb{R}[A])$ is a product of these group schemes. They are called split **diagonalizable group schemes** or split **quasi-tori**.

2.5. Recall that an action of an R-group scheme G on an R-scheme X is a morphism

$$G \times_{\operatorname{spec}(R)} X \to X$$

over $\operatorname{spec}(R)$ which satisfies the axioms of an action.

Proposition 2.6. Let A be an Abelian group and R be a commutative ring. There is a 1-1 correspondence

$$\left\{\begin{array}{c} A\text{-graded }R\text{-algebras}\end{array}\right\} \longrightarrow \left\{\begin{array}{c} affine \ schemes \ over \ spec(R) \\ with \ a \ spec(R[A])\text{-}action\end{array}\right\}$$

Proof. An action as in the RHS is given by an R-algebra-hom

$$B \xrightarrow{\alpha} B \otimes_R R[A]$$

(say given by $b \mapsto \sum_{m \in A} \alpha_m(b)[m]$) satisfying

1.

$$B \xrightarrow{\alpha} B \otimes_R R[A] \xrightarrow{\text{counit}} B$$

is the identity

2.

$$B \xrightarrow{\alpha} B \otimes_R R[A]$$

$$\downarrow^{\alpha} \qquad \qquad \qquad \downarrow^{\alpha}$$

$$B \otimes_R R[A] \xrightarrow{\text{comult.}} B \otimes R[A] \otimes R[A]$$

is commutative.

1. boils down to $\sum_{m} \alpha_m(b) = b$ and 2. to

$$\alpha_n(\alpha_m(b)) = \begin{cases} \alpha_m(b) & \text{if } m = n, \\ 0 & \text{otherwise.} \end{cases}$$

Since α is a ring-hom, we get a grading

$$B = \bigoplus_m \alpha_m(B)$$

Conversely, given an A-graded ring

$$B = \bigoplus_{m \in A} B_m$$

define

$$\alpha(b) = \sum_{m} b_m[m]$$

which satisfies 1. and 2. above.

2.7. Let $\varphi: M \to N$ be a morphism of monoids. There is an adjunction:

$$\left[\begin{array}{c} M\text{-}\mathbf{graded} \ R\text{-}\mathbf{alg} \end{array}\right] \xrightarrow{\varphi_*} \left[\begin{array}{c} N\text{-}\mathbf{graded} \ R\text{-}\mathbf{alg} \end{array}\right].$$

In other words, we have

$$\operatorname{Hom}_M(C, \varphi^* B) = \operatorname{Hom}_N(\varphi_* C, B)$$

The functors are defined as follows: If $C = \bigoplus_{m \in M} C_m$ is an *M*-graded algebra, we define an *N* grading on $\varphi_*C = C$ by $(\varphi_*C)_n = \bigoplus_{m \in \varphi^{-1}(n)} C_m$.

If $B = \bigoplus_{n \in N} B_n$ is an N-graded algebra, we define $\varphi^* B = \bigoplus_{m \in M} B_{\varphi(m)}$ with the obvious multiplication.

Lemma 2.8.

- 1. If φ is injective, we have $\varphi_*\varphi^*B \to B$. The left hand side is called the **Veronese subring**. We have furthermore $C \cong \varphi^*\varphi_*C$.
- 2. If φ is surjective, we have $\varphi_*\varphi^*B \twoheadrightarrow B$.

Example 2.9. Let $\varphi: M \to N$ be injective and C an M-graded algebra. φ_*C is called the extension by **0**.

Example 2.10. Let $\varphi : \mathbb{Z} \to \mathbb{Z}$ be multiplication by n. Consider the ring $B = k[x_1, \ldots, x_n]$ with its natural \mathbb{Z} -grading. The Veronese subring φ^*B is the subring of B generated by monomials of degree n. Both rings are the graded rings corresponding to a projective space and the associated morphism is the Veronese embedding.

Example 2.11. Let $\varphi: M \to 0$ the trivial map and B = R the trivial 0-graded ring. We have $\varphi^*B \cong R[M]$.

The following is crucial for the proof of finite generation of graded rings:

Proposition 2.12. Let $\varphi: M \to N$ be a morphism of fine monoids, and B a N-graded R-algebra. We have

1. B f.g. $\Rightarrow \varphi^* B$ f.g.

2. Assume that R is excellent and B is integral. If for all $n \in N$, $B_n \neq 0$ and there is d > 0 s.t. $dn \in \varphi(M)$ then¹

 $\varphi^* B f.g. \Rightarrow B f.g.$

Proof. 1. B is generated over R by f_1, \ldots, f_r , w.l.o.g. homogenous. This induces a homogenous morphism

$$\rho_*(R[\mathbb{N}^r]) \xrightarrow{f} B,$$

where $\rho: \mathbb{N}^r \to N$ is a homomorphism (given by the degrees of the f_i). Consider a Cartesian diagram:

$$\begin{array}{c} X \longrightarrow \mathbb{N}^r \\ \downarrow & \qquad \downarrow^{\rho} \\ M \xrightarrow{\varphi} N \end{array}$$

Proposition 1.3 shows that X is finitely generated. We can define a morphism

$$R[X] \to \varphi^* B$$

by sending [z,m] (with $\rho(z) = \varphi(m)$) to f(z) sitting in $(\varphi^*B)_m$. Since f maps $(\rho_*R[\mathbb{N}^r])_n$ surjectively to B_n , this map is surjective. Therefore φ^*B is finitely generated.

2. We may factor $M \to \operatorname{im}(\varphi) \to N$. If φ is surjective, we have $\varphi^*B \to B$, hence B is finitely generated. This reduces to the case φ injective, hence φ^*B can be considered as a (Veronese) subring of B. Choose non-zero homogenous elements f_1, \ldots, f_n such their degrees generate N. For each i, we have $f_i^d \in \varphi^*B$ for some d by assumption. Hence we have a homomorphism of fields

$$\operatorname{Quot}(\varphi^*B)[f_1,\ldots,f_n] \to \operatorname{Quot}(B)$$

where the left hand side is algebraic, hence finite over $Quot(\varphi^*B)$. Let $x \in B$ be a given homogenous element. We have

 $x \cdot f_1^{k_1} \cdots f_n^{k_n} \in \varphi^* B$

for some k_1, \ldots, k_n by the choice of the f_i . This shows that the above homomorphism is in fact an isomorphism. Since B is integral over φ^*B (because $f_i^d \in \varphi^*B$ for some d) it is a φ^*B -submodule integral closure of φ^*B in the finite field extension Quot(B), which is a finitely generated φ^*B -module [EGA IV, 7.8.3 (vi)]. It is therefore, as a submodule, finitely generated itself. Above we used that R is excellent, hence φ^*B is excellent because it is finitely generated over R.

Example 2.13. Let R = k a field. If $\varphi : M \to N$ was actually a morphism of finitely generated Abelian groups, we let $T_1 = \operatorname{spec}(k[M])$ and $T_2 = \operatorname{spec}(k[N])$ be the associated quasi-tori. In this case:

$$\operatorname{spec}(\varphi^*B) = (\operatorname{spec}(B) \times_k T_1)/T_2,$$

where T_2 acts on both factors. In the RHS we understand the categorical quotient. And

 $\operatorname{spec}(\varphi_*C)$

is spec(C) considered as scheme with T_2 -action by composition with $\operatorname{spec}(k[\varphi]): T_2 \to T_1$.

2.14. Let M and N be finitely generated Abelian groups and let $\varphi : M \twoheadrightarrow N$ be a surjection. We would like to know under which circumstances an M-graded ring C is of the form φ^*B and whether the ring B is uniquely determined by this. Here is the criterion:

¹If φ is surjective, the assertion of 2. is trivial and no assumptions are needed.

Proposition 2.15. We have $C = \varphi^* B$ for some N-graded R-algebra B, if and only if ker^{*} $C \cong C_0[\ker(\varphi)]$ (homogenous C_0 -isomorphism) such that for all $m \in M$, $k \in \ker(\varphi)$ the multiplication

$$C_m \otimes_{C_0} C_k \to C_{k+m}$$

is an isomorphism.

The ring B is uniquely determined up to isomorphism if C_0^* is divisible by the exponent of N_{tors} . (otherwise it may depend on the choice of isomorphism above).

The same assertion is true for sheaves on a ringed space (X, \mathcal{O}_X) , if in the last condition C_0^* is replaced by $H^0(X, C_0^*)$.

Proof. The only if part is clear from the definition of φ^* . By abuse of notation, denote by [k] for $k \in \ker(\varphi)$ the preimage of [k] under the isomorphism above. We define the ring B by defining B_n as $\bigoplus_{m \in \varphi^{-1}(n)} C_m$ but identifying C_x with C_{x+k} by multiplication with [k] (which is an isomorphism by assumption). This defines obviously a graded ring and we can define an isomorphism

$$C \to \varphi^* B = \bigoplus_{m \in M} B_{\varphi(m)}$$

by mapping a homogenous element x of degree m to the projection onto B but cosidering it in the m'th summand of the sum.

Two such constructions B and B_{χ} differ by a homogenous C_0 -automorphism of $C_0[\ker(\varphi)]$ which is obviously given by a character $\chi : \ker(\varphi) \to C_0^*$. If C_0 is divisible by the exponent of N_{tors} , we may lift the character to a character $\chi' : M \to C_0^*$ and define an graded C_0 -automorphism

 $C \rightarrow C$

on homogenous elements by $c_m \mapsto \chi'(m)c_m$. This induces an isomorphism between B and B_{χ} .

3 Divisorial rings and sheaves

Definition 3.1. Let X be an integral variety over $k = \overline{k}$ and M a f.g. submonoid of $\text{Div}_{\mathbb{Q}}(X)$. The sheaf of \mathcal{O}_X -algebras

$$\mathcal{R}(X;M) = \bigoplus_{D \in M} \mathcal{O}(\lfloor D \rfloor)$$

where

$$\mathcal{O}(D)(U) = \{ f \in K(X) \mid |\operatorname{div}(f) + D|_U \ge 0 \}$$

w.r.t. the multiplication inherited from K(X) is called the **divisorial sheaf** associated with M. Similarly the ring of its global sections

$$R(X;M) = \bigoplus_{D \in M} H^{0}(X, \mathcal{O}(\lfloor D \rfloor))$$

is called the **divisorial ring** associated with M.

Definition 3.2. A special role is played by those divisorial rings in which M is generated by divisors D_i which are rationally equivalent to a rational positive multiple of $K_X + \Delta_i$, where Δ_i is effective. They are called **adjoint** rings.

3.3. The main question is whether the divisorial rings are finitely generated. In contrast the divisorial sheaf is of finite type under pretty general conditions, for example if X is locally \mathbb{Q} -factorial. We will later in the seminar see the proof of the following:

Theorem 3.4. Let X be a smooth projective variety and let Δ be a \mathbb{Q} -divisor with simple normal crossings such that [D] = 0. Then the log canonical ring

$$R(X;K_X+\Delta)$$

is finitely generated.

Its proof requires the consideration of divisorial rings associated with monoids M other than \mathbb{N} . A typical intermediate step is a theorem of the form:

Theorem 3.5. Let X be a smooth projective variety of dimension n. Let B_1, \ldots, B_k be \mathbb{Q} -divisors on X such that $\lfloor B_i \rfloor = 0$ for all i, and such that the support of $\sum_{k=1}^k B_i$ has simple normal crossings. Let A be an ample \mathbb{Q} -divisor on X, and denote $D_i = K_X + A + B_i$ for every i. Then the adjoint ring

$$R(X; D_1, \ldots, D_k)$$

is finitely generated.

4 Cox rings and sheaves

Let again X be an integral variety over $k = \overline{k}$ and M a f.g. submonoid of Div(X). From the definition of the divisorial sheaves and rings it is to be expected that the divisorial sheaf/ring only depends on the image of M in the class group Cl(X).

Proposition 4.1. Let $\varphi : M \twoheadrightarrow im(M) \subseteq Cl(X)$ the projection. Then there is an im(M)-graded sheaf $\widetilde{\mathcal{R}}$ such that

$$\mathcal{R}(X;M) \cong \varphi^* \widetilde{\mathcal{R}}.$$

(similarly for R(X; M)).

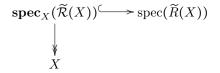
If either $H^0(X, \mathcal{O}_X^*) = k^*$ or $\operatorname{Cl}(X)$ is torsion-free, $\widetilde{\mathcal{R}}$ is uniquely determined up to isomorphism.

Definition 4.2. If $\varphi(M) \to \operatorname{Cl}(X)$ is surjective (in particular $\operatorname{Cl}(X)$ is f.g.) and the assumptions above are satisfied, the sheaf $\widetilde{\mathcal{R}}(X) = \widetilde{\mathcal{R}}$ is called the **Cox sheaf** of X. By the uniqueness it does not depend on M either (up to isomorphism)². The ring of its global section $\widetilde{\mathcal{R}}(X)$ is called the **Cox ring** of X.

4.3. The Cox sheaf and Cox ring are $\operatorname{Cl}(X)$ -graded by construction or equivalently $\operatorname{spec}_X(\widetilde{\mathcal{R}}(X))$ is equipped with an action of $\operatorname{spec}(k[\operatorname{Cl}(X)])$ (the **characteristic quasi-torus**) acting fibrewise. Similarly $\operatorname{spec}(\widetilde{\mathcal{R}}(X))$ is equipped with a $\operatorname{spec}(k[\operatorname{Cl}(X)])$ action. In general we have

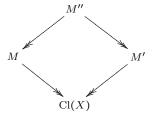
$$\mathcal{R}(X;M) = \varphi^* \widetilde{\mathcal{R}}(X)$$
 $R(X;M) = \varphi^* \widetilde{R}(X)$

for any divisorial sheaf/ring. In particular, if the Cox ring is finitely generated, all divisorial rings are finitely generated. If X is, in addition, normal of affine intersection we have a diagram



where the horizontal arrow is an equivariant open embedding (with complement of codim ≥ 2) and the vertical arrow can be identified with the categorical quotient of the action of the characteristic quasi-torus. If X is Q-factorial it is a geometric quotient in the sense of [GIT]. If X is locally factorial, the action is free.

²For M and M' look at the Cartesian diagram



Proof of the Proposition. We have to show that the criteria of Proposition 2.15 are satisfied. Let ker : $\ker(\varphi) \hookrightarrow M$ be the inclusion. We have obviously

$$\ker^* \mathcal{R}(X; M) = \mathcal{R}(X; \ker(\varphi))$$

Hence we have to see that for a divisorial sheaf associated with a submonoid N of *rational* divisors there is an isomorphism

$$\mathcal{R}(X;N) \cong \mathcal{O}_X[N]$$

This has to be given by a homomorphism $\alpha : N \to K(X)$ such that $\operatorname{div}(\alpha(D)) = D$ which can clearly be chosen. The second assertion is that

$$\mathcal{O}_X(D) \otimes_{\mathcal{O}_X} \mathcal{O}_X(\operatorname{div}(f)) \to \mathcal{O}_X(D + \operatorname{div}(f))$$

be isomorphisms which is obvious, however. The same argument works for the rings instead of sheaves. \Box

5 Finite generation of divisorial rings associated with semi-ample bundles

Let X be a projective smooth variety over $k = \overline{k}$ and $\underline{D} = (D_1, \ldots, D_r)$ be a tuple of divisors. If $\underline{n} = (n_1, \ldots, n_r)$ we will write \underline{nD} for the divisor $n_1D_1 + \cdots + n_rD_r$. We write $\underline{n} > d$ if all $n_i > d$.

Proposition 5.1 (Zariski). If \underline{D} consists of semi-ample divisors then the section ring

$$R(X; D_1, \dots, D_r) = \bigoplus_{\underline{n} \in \mathbb{N}^r} H^0(X, \mathcal{O}(\underline{nD}))$$

is finitely generated.

Proof. It is clear that the section ring is integral. Using Proposition 2.12 we may assume that D_1, \ldots, D_r are actually generated by global sections (i.e. base point free). We are furthermore reduced to show that the multiplication

$$H^{0}(X,\underline{n}_{1}\underline{D}_{1}) \times H^{0}(X,\underline{n}_{2}\underline{D}_{2}) \to H^{0}(X,\underline{n}_{1}\underline{D}_{1} + \underline{n}_{2}\underline{D}_{2})$$

is surjective, provided $\underline{n}_1 > d$, $\underline{n}_2 > d$. Here \underline{D}_1 and \underline{D}_2 are arbitrary subsets of the original set of divisors. Let $\varphi_{j,i}$ be the morphism

$$\varphi_{j,i}: X \to \mathbb{P}^N$$

determined by the sections in $H^0(X, \mathcal{O}(D_{j,i}))$ and let φ_j (j = 1, 2) the product over all i

$$\varphi_i: X \to (\mathbb{P}^N)^r$$

(we may assume that always the same N occurs). We have then

$$\mathcal{O}(\underline{n}_{i}\underline{D}_{i}) = \varphi_{i}^{*}\mathcal{O}(\underline{n})$$

and hence

$$H^{0}(X,\underline{n}_{j}\underline{D}_{j}) = H^{0}((\mathbb{P}^{N})^{r_{j}},(\varphi_{j})_{*}(\varphi_{j})^{*}\mathcal{O}(\underline{n}_{j})) = H^{0}((\mathbb{P}^{N})^{r_{j}},((\varphi_{j})_{*}\mathcal{O}_{X})\otimes\mathcal{O}(\underline{n}_{j}))$$

(in the second step, we used the projection formula). Denote by Y_j the image of φ_j . Consider the 'diagonal':

$$\varphi_1 \times \varphi_2 : X \to (\mathbb{P}^N)^{r_1 + r_2}$$

and denote Y its image.

According to Lemma 5.3 by replacing \underline{D}_j with some multiple again we may assume that $\varphi_{j*}\mathcal{O}_X = \mathcal{O}_{Y_j}$ and $(\varphi_1 \times \varphi_2)_*\mathcal{O}_X = \mathcal{O}_Y$.

Consider now the exact sequence

$$0 \longrightarrow \mathcal{I} \longrightarrow \mathcal{O}_{Y_1 \times Y_2} \longrightarrow \mathcal{O}_Y \longrightarrow 0$$

on $(\mathbb{P}^N)^{r_1+r_2}$. Tensoring it with $\mathcal{O}(\underline{n}_1, \underline{n}_2)$, we get

$$0 \longrightarrow \mathcal{I} \otimes \mathcal{O}(\underline{n}_1, \underline{n}_2) \longrightarrow \mathcal{O}_{Y_1 \times Y_2} \otimes \mathcal{O}(\underline{n}_1, \underline{n}_2) \longrightarrow \mathcal{O}_Y \otimes \mathcal{O}(\underline{n}_1, \underline{n}_2) \longrightarrow 0$$

We get the long exact sequence of cohomology

$$H^{0}((\mathbb{P}^{N})^{r_{1}+r_{2}}, \mathcal{O}_{Y_{1}\times Y_{2}} \otimes \mathcal{O}(\underline{n}_{1}, \underline{n}_{2})) \longrightarrow H^{0}((\mathbb{P}^{N})^{r_{1}+r_{2}}, \mathcal{O}_{Y} \otimes \mathcal{O}(\underline{n}_{1}, \underline{n}_{2}))$$

 $\longrightarrow H^1((\mathbb{P}^N)^{r_1+r_2}, \mathcal{I} \otimes \mathcal{O}(\underline{n}_1, \underline{n}_2))$

By Lemma 5.4 we get the vanishing of the H^1 for $\underline{n}_1 > d$, $\underline{n}_2 > d$. But

$$H^{0}((\mathbb{P}^{N})^{r_{1}+r_{2}}, \mathcal{O}_{Y_{1}\times Y_{2}} \otimes \mathcal{O}(\underline{n}_{1}, \underline{n}_{2})) = H^{0}(X, \mathcal{O}_{X}(\underline{n}_{1}\underline{D}_{1})) \otimes H^{0}(X, \mathcal{O}_{X}(\underline{n}_{2}\underline{D}_{2}))$$

and

$$H^{0}((\mathbb{P}^{N})^{r_{1}+r_{2}},\mathcal{O}_{Y}\otimes\mathcal{O}(\underline{n}_{1},\underline{n}_{2}))=H^{0}(X,\mathcal{O}_{X}(\underline{n}_{1}\underline{D}_{1}+\underline{n}_{2}\underline{D}_{2}))$$

and the map is multiplication. The statement follows.

Corollary 5.2. If D_1, \ldots, D_r are as in the Proposition and $M \subset Div(X)$ is the submonoid generated by them, then the divisional ring

R(X;M)

associated with M is finitely generated.

Proof. Apply Proposition 2.12 to the morphism $\mathbb{N}^r \twoheadrightarrow M$.

Lemma 5.3. Let D be a semi-ample divisor on X. For some integer n the morphism

 $\varphi_{nD}: X \to \mathbb{P}^N$

determined by $\mathcal{O}(nD)$ satisfies $(\varphi_{nD})_*\mathcal{O}_X = \mathcal{O}_Y$, where Y is the image.

Proof. W.l.o.g. we assume that D is generated by global sections. We have the Stein factorization of φ_D [Hartshorne, III, Corollary 11.7]:

$$X \xrightarrow{\varphi} X' \xrightarrow{p} \mathbb{P}^N$$

and

$$H^{0}(X, \mathcal{O}(nD)) = H^{0}(X, \varphi_{D}^{*}\mathcal{O}(n)) \cong H^{0}(X', (\varphi_{*}\mathcal{O}_{X}) \otimes p^{*}\mathcal{O}(n)) = H^{0}(X', p^{*}\mathcal{O}(n))$$

Here we used $\varphi_* \mathcal{O}_X = \mathcal{O}_{X'}$. This means that φ_{nD} factors through φ . Now $p^* \mathcal{O}(n)$ is very ample for some n [Hartshorne, III, Exercise 5.7 (d)]. Hence it induces an embedding of X' into some $\mathbb{P}^{N'}$.

Lemma 5.4. Let $X = (\mathbb{P}^N)^r$ and \mathcal{L} a coherent sheaf on X. There is an integer d such that

$$H^{i}(X, \mathcal{L} \otimes \mathcal{O}(\underline{n})) = 0$$

for all i > 0, $\underline{n} > d$.

Proof. This is a refinement of Serre's vanishing Theorem [Hartshorne, III, Theorem 5.2] and proven the same way. \Box

5.5. Finally a counterexample (taken from [CaL2]): Let E be an elliptic curve and let D be a divisor of degree 0 which it not torsion. Let $B_2 \in \text{Div}_{\mathbb{Q}}$ be a divisor of non-zero degree with $\lfloor B_2 \rfloor = 0$. Then

$$R(E; K_E + D, K_E + D + B_2) = \bigoplus_{\underline{n} \in \mathbb{N}^2} H^0(E, \mathcal{O}(\lfloor (n_1 + n_2)D + n_2B_2 \rfloor))$$

is not finitely generated. To show this (Prop. 2.12), it suffices to assume that D and $D + B_2$ are integral. If R would be finitely generated,

$$M = \{ \underline{n} \in \mathbb{N}^2 \mid H^0(E, \mathcal{O}((n_1 + n_2)D + n_2B_2)) \neq 0 \}$$

would be a finitely generated submonoid. By Riemann-Roch we have

 $H^0(E, \mathcal{O}(n_1D)) = 0$

for $n_1 > 0$ but

$$H^{0}(E, \mathcal{O}((n_{1}+n_{2})D+n_{2}B_{2}) \neq 0$$

for $n_2 > 0$ because $(n_1 + n_2)D + n_2B_2$ has positive degree. Hence M is not finitely generated.

6 Fixed parts

Let X be a smooth projective variety. For a divisor $D \in \text{Div}(X)$ we denote

$$\operatorname{Fix}(D) = \min_{E \in |D|} E$$

(where is minimum is taken component-wise) and for $D \in \text{Div}_{\mathbb{Q}}(X)$:

$$\mathbf{Fix}(D) = \liminf_{m>0} \frac{1}{m} \operatorname{Fix}(mD)$$

for $m \in \mathbb{N}$ sufficiently divisible.

Proposition 6.1. Let $D_1, \ldots, D_n \in \text{Div}_{\mathbb{Q}}(X)$ be given and assume that

$$R(X; D_1, \ldots, D_n)$$

is finitely generated. Let M be the submonoid of $\text{Div}_{\mathbb{Q}}(X)$ generated by D_1, \ldots, D_n .

- 1. The function **Fix** extends to a piecewise linear function on $\mathbb{R}_{>0}M \subseteq \text{Div}_{\mathbb{R}}(X)$.
- 2. There is an integer k such that for all $D \in kM$ we have Fix(D) = Fix(D)

Proof. 1. We have a (w.l.o.g. homogenous) morphism

$$\rho:\varphi_*(k[\mathbb{N}^r])\to R(X;M)$$

where $\varphi : \mathbb{N}^r \to M$ is a homomophism. Let $\widetilde{\varphi} : \mathbb{R}^r_{\geq 0} \to \mathbb{R}_{\geq 0} M \subset \langle M \rangle_{\mathbb{R}}$ be the extension. For each $D \in M$ we have

$$\operatorname{Fix}(D) = \min_{n \in \varphi^{-1}(D)} \operatorname{div}(\rho([n]))$$

and

$$\mathbf{Fix}(D) = \liminf_{m} \frac{1}{m} \min_{n \in \varphi^{-1}(mD)} \operatorname{div}(\rho([n])).$$

Now div $\circ \rho$ is a linear function $l : \mathbb{N}^r \to \text{Div}(X)^+$ provided the argument is sufficiently divisible. We may write:

$$\mathbf{Fix}(D) = \liminf_{m} \min_{n \in \widetilde{\varphi}^{-1}(D) \cap \frac{1}{m} \mathbb{N}^{r}} l(n).$$

Therefore

$$\mathbf{Fix}(D) = \min_{n \in \widetilde{\varphi}^{-1}(D)} l(n).$$

This makes already sense for $D \in \mathbb{R}_{\geq 0}M$. To show that it defines a piecewise linear function on $\mathbb{R}_{\geq 0}M$, it suffices to show that finitely many functions $\operatorname{mult}_G \circ l$ for prime divisors G are piecewise linear. But in this case the statement follows from Lemma 6.2.

2. It suffices to show this on one of the sub-cones $\mathbb{R}_{\geq 0}M'$ where **Fix** is linear. Here M' is any f.g. submonoid of Div(X) generating this cone. If k is sufficiently large, $D \in kM$ will ensure $k \in M'$ and

$$\mathbf{Fix}(D) = \mathbf{Fix}(\sum \alpha_i m_i) = \sum \alpha_i \mathbf{Fix}(m_i)$$

Now the minimum in $\operatorname{Fix}(m_i)$ is actually attained on the intersection of $\widetilde{\varphi}^{-1}(m_i)$ with a face of $\mathbb{R}^r_{\geq 0}$. This intersection contains a rational point. This means that $\operatorname{Fix}(dm_i) = \operatorname{Fix}(dm_i)$ for some d. Taking k to be the l.c.m. of these d, we have

$$Fix(D) = Fix(D)$$

provided $D \in kM'$.

Lemma 6.2. Let $\sigma \in \mathbb{R}^r$ be a rational polyhedral cone not containing a line, $\rho : \mathbb{R}^r \twoheadrightarrow \mathbb{R}^m$ be a projection and $\alpha : \mathbb{R}^r \to \mathbb{R}$ be a linear form which is non-negative on σ . Then the function

$$\rho(\sigma) \to \mathbb{R}_{\geq 0}$$
$$m \mapsto \min_{x \in \rho^{-1}(m) \cap \sigma} \alpha(x)$$

is piecewise linear.

Proof. Sketch: $\rho(\sigma)$ is covered by the isomorphic images of faces of σ of appropriate dimensions. The min is always attained on one of these faces.